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~le conditions for the existence and tilting of simple electrohydrodynamic waves 
are investigated. 

In this article we discuss the system of one-dimensional time-dependent electrohydrody- 
namic (EHD) equations for a polytropic or, in a special case, adiabatic process. We obtain 
an exact solution for the system of equations in the form of simple (Riemann) waves on the 
assumption that all the unknowns, in this case the velocity of the medium and the electric 
field, are functions of the density. The electric field and velocity of the medium are 
expressed in quadratures in this situation. If the polytropic exponent is an integer, the 
solution can be written in elementary functions. 

Proceeding from the solution thus obtained, we investigate the tilting of a simple wave 
in electrohydrodynamics. It turns out, in contrast with hydrodynamic and magnetohydrodynamic 
(MHD) Riemann waves [1-3], that the stated property depends on the combination of the sign 
of the electric field and the mobility coefficient, as well as on the gasdynamic parameters 
of the flow. 

Strictly speaking, the process of tilting of a Riemann wave can be reduced to the situa- 
tion where a decrease in the characteristic space scale of the flow necessitates the analysis 
of charge-diffusion processes and effects associated with hydrodynamic viscosity. In the 
given situation such an analysis is invalid at the outset, and it is necessary to treat EHD 
flows with regard for the diffusion of charges when the variation of the electric field is 
described by the Burgers equation [4, 5]. 

The exact solutions of the one-dimensional time-dependent system of EHD equations have 
been studied previously, e.g., in [6] for the case of an incompressible fluid. Processes 
involving the propagation of weak shocks (first-order discontinuities) in electrohydrodyna~ 
mics have been investigated in [7], in which their velocities of propagation, representing 
the velocities of propagation of the leading edge of Riemann waves, were determined. 

Riemann-Wave Solution of the EHD Equations 

We consider the system of EHD equations, which in the one-dimensional time-dependent 
case of a polytropic gas flow is reducible to the form [4-9] 

&t ,Ou 1 ap 1 aE 

at ax p ax 4nO 3x 

, &~ ap ao + p  - - §  = 0 ,  p = A p ' - ,  
at ax Ox 

(i) 

aE aE 
- -  § (u + bE) - -  O. 

Ot Ox 

We seek solutions of the system (i) in the form of simple waves. Assuming that all the 
variables depend on a function ~ (x, t) and substituting the expressions 

at dcp Ot ax dq~ ax 

where f i s  an unknown f u n c t i o n ,  i n t o  the  s y s t e m  o f  e q u a t i o n s  (1 ) ,  we o b t a i n  a homogeneous 
s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  A p p l y i n g  the  c o n d i t i o n  f o r  such a s y s t e m  to  have  
a n o n t r i v i a l  s o l u t i o n ,  we c a l c u l a t e  the  p o s s i b l e  v e l o c i t i e s  r e l a t i v e  t o  the  f l u i d  p a r t i c l e s .  
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Fig. i. Qualitative behavior 

of the integral curves of Eq. 
(5) for various values of the 
constant of integration C 
(initial conditions); the 
dashed curve represents the 
null isoclinic line. 

By definition, tbe velocity of a point with constant phase is a = --(Pl/(P]: -~. The veloci- 
ties of propagation are equal to a~,2 =• ao = (dp/do)Z/2; a3 =bE. These velociti~as have 
been calculated previously [4, 5, 7] as the weak-shock propagation velocities. 

If now W(x, t) =p(x, t), i.e., if all the variables are functions of the density, we 

obtain the system of equations 

du Op , { du 1 dp 1 E OE ~ Op 
d 9 Ot ~ u - - - - - ~ -  Ox ] - 0 ,  d9 9 dp 4 .~9 . Ox 

89 ( d,~ - v -1  8p O, 8p _ (~t + bE) bp @ p -- t~ . . . . .  O. (2) 
\ do ] Ox dt Ox 

For the system (2) to have a nontrivial solution it is necessary that the following rela- 

tions hold: 

b E - -  
dtt @ _ _ I  E dE . I dp , (3) 
dp 4~9 dp P dp 

du bE p - -  (4) 
dp 

Multiplying Eq. (3) by p and making use of (4), we eliminate the derivative of the velo- 

city u and obtain 

d fl__ E2 + 8~b2E2 8~ dp _~_ 8~An9,~-1 (5) 
dp dp 

The solution of Eq. (5) can be written in the form 

Ez = exp (--b,) (B j~lj '~-' exp g@-+. C) ,  (6) 

where y =8~b2p; g = (8~)~-nAn/b 2n. 

We note that with regard for the boundary conditions the solution (6) can be written 
with a definite integral and expressed in terms of special functions. Then the particle 
velocity u of the medium is determined in terms of the electric field E by the quadrature 

E (9) dp + const. 
u==b~ P 

Asymptotic Representations; Phase Portrait; Special Cases 

We use expression (6) and determine the asymptotic relationship of the electric field 
squared E 2 to the density p for 8~b2p<<i. Expanding the functions involved in (6) into a 
series and retaining the first terms of the expansion for n >i, we obtain 

E2 C(l--8~bto) (7) 

To determine the asymptotic behavior for 8~b2p>>l we integrate expression (6) by parts: 

E2 . Anb 2 p,~_~ An(n--1)8r~b ~ ,~ @Cexp(_8abZ9)  a_~ Al~(u--1)(n--2)64a2b 6 ~ p~-3exp(8~'b2p)dp" (8) 

As above, we retain only the principal term of the expansion for 8~b20>>I. According to (8), 
we have 
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An ~n-I 
E2-- bZ " (9) 

This expression is written for the case of greatest interest, where the polytropy expo- 
nent 1 <n < 2. In real EHD flows, where the electric charge carriers are ions, as a rule, 
the condition 87b2p<< 1 holds. When the charge carriers are electrons, the condition 8wb2p <i 
or 8~b2p >i can exist (depending on the density of the medium). 

The qualitative pattern of behavior of the integral curves of Eq. (5) has the form shown 
in Fig. i. 

We note that the equation for the null isoclinic line (i.e., the line connecting points 
at which tl,e slope of the integral path is equal to zero) has the form E 2 =Anpn-I/b 2 and 
coincides with the asymptotic expression (9) for 8wb2p>>l. This relation can be rewritten 

2 in the form b2E 2 =dp/dp Yao. 

It can, therefore, be concluded that on the zero isoclinic line the velocity of the 
leading edge of a Riemann wave propagating in a medium with an electric space charge is equal 
to the velocity of propagation of small disturbances in the absence of an electric field. 
The phase plane admits a natural partition into two domains. The integral paths situated 
above the null isoclinic line correspond to the motions of disturbances with supersonic velo- 
cities, and those below the null isoclinic line correspond to subsonic velocities. Paths 
intersecting the axis E 2 =0 remain at all times in the subsonic domain for p >0. Paths inter- 
secting the axis p =0 enter the supersonic and the subsonic domain for E 2 >0. This means 
that for identical boundary conditions corresponding to paths of the latter type, motions 
with supersonic and subsonic velocities are possible. A wave can be made to go from subsonic 
to supersonic velocity by decreasing the density of the medium, whereas increasing the den- 
sity produces the opposite transition. 

This separation of the integral paths implies that the boundary conditions are divided 
into two types: For some, both supersonic and subsonic Riemann waves are possible, while 
for others only disturbances p2opagating with subsonic velocities are realized. 

In the case of an integer-valued polytropic exponent n the solution (6) is expressed in 
terms of elementary functions. We make use of expression (8), setting n = i, and obtain E 2 = 
An/b 2 +C exp(--8wb2p). Similarly, for n =2 we have 

Ez _ C e x p ( _ 8 ~ b 2 p )  + A n 9  A n ( n - -  1) (i0) 
b 2 8 ~b ~ 

Conditions for the Tilting of a Riemann Wave 

To analyze the wave deformation with time we calculate the derivative of the wave phase 
velocity %(p) with respect to the density, where %(p) =u(p) +bE(p ) . 

In the general case the tilting condition for a simple wave has the form [i, 2] 

-->0. 
d9 

In application to the investigated EHD Riemann wave condition (ii) 
follows on the basis of Eq. (4) and the fact that p >0: 

dE 
bE Jr- b9---~o > O. 

Substituting into (12) the expression for dE/d 0 from Eq. (5) 
quantity E2/p, after suitable transformations we have 

bE a~ -F 4zp ' --b2EZ ~ 0 .  

(11) 

can be rewritten as 

(12) 

and multiplying by the positive 

Thus, tilting of the EHD Riemann wave takes place under the conditions 

Ez 
2 + __--b2E2>O. h E r O ,  a o 

4~P 

(13) 

(14) 
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E 2 
bE ~ O, a o + - -  - -  b 2 E  2 ~ O. (15) 

4up 

We note that the terms in the parentheses in expression (13) represent velocities 
squared. The first term a~ is the square of the velocity of small hydrodynamic disturbances, 
b2E 2 is the square of the velocity of disturbances propagating via charged particles, and the 
middle term E2/4wp is the square of a velocity analogous to the Alfv@n velocity in magneto- 
hydrodynamics. Inequality (14) shows that for the tilting of subsonic EHD Riemann waves the 
following condition is sufficient: 

bE>O. (16) 

Two cases are possible for supersonic waves. If the wave is supersonic, but a~ +E2/ 
4~p >b2E 2, i.e., the wave is comparatively slow, then the tilting condition coincides with 
(16). When the velocity of a wave propagating via charges is sufficiently large, i.e., b=E2> 
a~ +E2/4wp, the tilting process occurs under the condition bE <0. 

In real EHD flows, where the medium is acted upon by a subbreakdown electric field (the 
EHD equations are also applicable in this case), for charged media with an ionic charge com- 
ponent, as a rule, the condition b2E 2 <a~ +E2/4wp always holds. On the other hand, for flows 
in which the charge carriers are electrons, the true condition is b2E 2 >a~ +E2/4wp. 

In contrast with hydrodynamic and MHD Riemann waves, EHD Riemann waves have a distinc- 
tive feature in that a steady-state (time-invariant) Riemann wave can exist. Its existence 
requires satisfaction of the condition 

E2 
a~ ~ b2E 2 ~ O. 

4~p 

The use of asymptotic expressions in the limits of large and small densities 0 simpli- 
fies the tilting condition (13). For relatively large densities, i.e., for 8wb20>>l, by 
substituting expression (8) into (13) we arrive at condition (16). We infer from a joint 
analysis of (7) and (13) that the tilting of a Riemann wave for 8~b2p<< 1 is associated with 
the sign of the constant of integration in the solution (6), i.e., actually depends on the 
initial conditions~ Tilting takes place for bEC >0. 

NOTATION 

A, constant in the polytropic equation; ao, propagation velocity of small disturbances 
in zero electric field; ai,2,3, characteristic v~locities; B, grouped constants; b, mobility 
coefficient of charged particles; C, constant of integration; E, electric field strength; f, 
unknown function; n, polytropic exponent; x, coordinate~ y, dimensionless density; u, p, p, 
velocity, pressure, and density of the medium; t, time~ ~, wave phase velocity; ~ =3.14...; 
~, independent variable for a simple wave. 
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TRANSPORT PROPERTIES OF NITROGEN, OXYGEN, CARBON 

DIOXIDE, AND AIR AT LOW DENSITIES AND 

T~ERATURES FROM 50 TO 3000~ 

N. A. Zykov, R. M. Sevast'yanov, and 
K. I. Voroshilova 

UDC 536.45 

We calculate the viscosity and thermal conductivity, the Prandtl number, and the 
Eucken factor for a (12-7, 6) pair model potential. The calculated values agree 
with correlated experimental data within the limits of error of the measurements. 

The Chapman--Enskog theory establishes a functional relation between the transport coef- 
ficients of a rarefied monatomic gas and the pair potential energy (potential) of the inter- 
particle interaction [i, 2]. The calculation of the potential energy of the interparticle 
interaction over a wide range of distances is extremely difficult. Therefore, model poten- 
tials are generally used [2, 3]. However, the known pair potential models of the interaction 
(Lennard-Jones, Buckingham, Kihara~ etc.) are unsuitable for calculations, since the principle 
of corresponding states [4] is not actually satisfied for them. 

It was shown in [5, 6] that the (12-7) two-parameter pair model potential 

where ~ is the depth of the potential well and ~ is the molecular diameter, gives a consis- 
tent description of various experimental data on the properties of monatomic gases at low 
densities; i.e., for it the principle of corresponding states is satisfied. This permitted 
the calculation of transport coefficients of monatomic gases and binary mixtures of them for 
low densities and temperatures from i00 to 6000~ [7]. Subsequent measurements [8] confirmed 
the accuracy of the calculations. 

A generalization of the pair potential (i) was proposed in [9, i0] for nonpolar poly- 
atomic molecules 

[ 2 2 o2 2 7/2 ( 2 )  
0 -- re - - r e  r ~  r e, (r) = 5 10428 2 2 a 2 

, r - - r e  , r - - r e  

where  r e  i s  the  d i s t a n c e  be tween  the  o u t e r  gtoms fo rming  the  c o r e  o f  the  m o l e c u l e .  I t  was 
shown t h a t  the  t h r e e - p a r a m e t e r  p a i r  modeZ p o t e n t i a l  (2) g i v e s  a c o n s i s t e n t  d e s c r i p t i o n  o f  
v a r i o u s  e x p e r i m e n t a l  d a t a  on the  p r o p e r t i e s  o f  n o n p o l a r  p o l y a t o m i c  gases  whose m o l e c u l e s  
have  v e r y  d i f f e r e n t  g e o m e t r i c  s t r u c t u r e s  [ 9 ] .  The Kong combin ing  r u l e s  [11] were  g e n e r a l i z e d  
in  [10] to  the  case  o f  t he  p o t e n t i a l  (2 ) ,  which p e r m i t t e d  t he  c a l c u l a t i o n  o f  thermodynamic  
p r o p e r t i e s  o f  n o n p o l a r  p o l y a t o m i c  gases  and m i x t u r e s  o f  them f o r  low and medium d e n s i t i e s  
o v e r  a wide  r ange  o f  t e m p e r a t u r e s .  

The p r e s e n t  a r t i c l e  p r e s e n t s  c a l c u l a t e d  v a l u e s  o f  t r a n s p o r t  c o e f f i c i e n t s  o f  a i r  and i t s  
components  ( n i t r o g e n ,  oxygen ,  ca rbon  d i o x i d e ) .  The v i s c o s i t y  was c a l c u l a t e d  w i t h  the  
Chapman--Enskog t h e o r y ,  t a k i n g  a c c o u n t  o f  the  K i h a r a  c o r r e c t i o n  in  h i g h e r  a p p r o x i m a t i o n s  [1, 
2 ] .  The t h e r m a l  c o n d u c t i v i t y  was c a l c u l a t e d  by u s i n g  r e s u l t s  o f  t he  n o n l i n e a r i z e d  Mason-- 
Nonchik  t h e o r y  [12] ,  r e f i n e d  by Antye  [13] :  
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